READ THIS FIRST:
Do your best to do every item on your own; if you cannot immediately do an item, go on to others and then come back to it later. Please check the resources section if you have any problems and talk with your professor if there are any further questions.

Due: Wednesday, March 1, 2017.

Goals:

- Practice getting around the command line compiling and running Java programs.
- Practice getting around in and using GitHub.
- Explain some key concepts we covered in class.
- Get some lab points.

Part One. Description:

The famous Hill cryptosystem was an early substitution cipher based on linear algebra and modular arithmetic. One of the key components is an encryption matrix that has an important property: it has to be invertible in modulo m. An important step in determining if an $n \times n$ matrix A is invertible is to find if the determinant of A and m are relatively prime.

A common way of finding the determinant of A, $\det(A)$, is to use an algorithm of cofactor expansion along the first row. If we denote A in terms of its elements in the i-th row and j-th column as $A = [a_{ij}]$, then we can formally describe the algorithm for the three major cases as follows:

1. For $n = 1$, $\det(A)$ is simply a, since $A = [a]$.
2. For $n = 2$, $\det(A) = a_{11}a_{22} - a_{12}a_{21}$, where $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$.
3. For $n \geq 3$, $\det(A) = a_{11}\det(A_{11}) - a_{12}\det(A_{12}) + a_{13}\det(A_{13}) - \cdots + (-1)^{n+1}a_{1n}\det(A_{1n})$, where A_{ij} is the $(n-1) \times (n-1)$ submatrix that results when the i-th row and the j-th column are removed from the original matrix A.

Your mission is to write a program that calculates the determinant of any square modular matrix. In this case, we will limit our input to signed 32-bit integers.
Input:

The input starts with a positive integer m, the modulo under which all integer calculations will be performed, followed by a single space and n, the size of the matrix A. Then it is followed by exactly n lines with n integers separated by a single space on each line.

Output:

The output must be the smallest integer greater than or equal to zero corresponding to the $\det(A)$ in modulo m.

Sample Input 1:

```
12 2
3 2
2 3
```

Sample Output 1:

```
5
```

Sample Input 2:

```
3 2
1 2
9 8
```

Sample Output 2:

```
2
```

Sample Input 3:

```
9 3
7 5 2
0 6 4
8 2 5
```

Sample Output 3:

```
2
```
Requirements:

Create a method with the following signature `int cofModDet(int m, int[][] A)` that receives an integer \(m > 0\), a two-dimensional array (matrix) \(A\), and returns the corresponding determinant in modulo \(m\) as an integer. Note that all integer operations must be performed in modulo \(m\) as well as the result. Also, make sure you follow the style guidelines http://www.reev.us/mscs630s17/style.html that were given for this course.

Part Two. Description:

Sometimes you want to process information down to its bits, for example, in cryptography, you often want to process a plaintext \(P\) for analysis or encryption. Your mission this time is to process a plaintext formatting it down to its bytes.

If we define \(P\) as the plaintext composed of several bytes \(b\), then we could say that \(P = b_1 b_2 \ldots b_n\) denotes a plaintext of \(n\) bytes. In this problem we will use the ASCII code to represent the plaintext for simplicity. You see, every symbol in the ASCII code can be mapped to a hexadecimal value of two digits, which is a byte.

Your mission, is to take a plaintext \(P\) composed of \(n\) symbols from the ASCII table, and express that plaintext in a matrix of four rows and a variable number of columns, whose elements are hexadecimal bytes placed in column-major order, as follows:

\[
P = \begin{bmatrix}
 b_1 & b_5 & \vdots \\
 b_2 & b_6 & \vdots \\
 b_3 & b_7 & b_n \\
 b_4 & \vdots
\end{bmatrix}
\]

However, there is one caveat: all elements in the matrix must have a value and the number of columns in the plaintext matrix \(P\) has to be a multiple of four. Thus, for the cases in which the number of columns is less than a multiple of four or there are empty values, we will use the technique known as padding, meaning that we will fill those elements with a chosen value \(s\). We will call this new matrix \(\hat{P}_s\).

For example, if the plaintext is \(P = \text{‘Hola mundo!’}\), the corresponding \(\hat{P}_s\) matrix with a chosen value of \(s = \text{‘~’}\) would be the following:

\[
\hat{P}_s = \begin{bmatrix}
 48 & 20 & 64 & 7E \\
 6F & 6D & 6F & 7E \\
 6C & 75 & 21 & 7E \\
 61 & 6E & 7E & 7E
\end{bmatrix}
\]

Your task is to provide the padded matrix \(\hat{P}_s\) for any given plaintext \(P\) and substitution character \(s\).
Input:

The input consists of two lines. The first contains the substitution character s, where $|s| = 1$. The second line contains the plaintext P, where $|P| \leq 32,768$.

Output:

The output is composed of at least four lines with the possibility of more. The output is organized as follows: Let $\hat{P}_s(1)$ denote the first group of four columns of the matrix \hat{P}_s; the program will print $\hat{P}_s(1)$ followed by an empty line, followed by $\hat{P}_s(2)$ which is the second group of four columns followed by an empty line, and so on until the entire matrix \hat{P}_s has been printed in groups of four columns.

Sample Input 1:

```
Hola mundo!
```

Sample Output 1:

```
48 20 64 7E
6F 6D 67 7E
6C 75 21 7E
61 6E 7E 7E
```

Sample Input 2:

```
0
Een goede naam is beter dan olie.
```

Sample Output 2:

```
45 67 65 61
65 6F 20 6D
6E 65 6E 20
20 64 61 69
73 74 64 6F
20 65 61 6C
62 72 6E 69
65 20 20 65
2E 30 30 30
30 30 30 30
30 30 30 30
30 30 30 30
```
Requirements:

Create a method with the following signature `int[][] getHexMatP(char s, String p)` that receives a substitution character `s`, and a string `p` whose length is $|p| \leq 16$; the length of `p` should always be 16 unless the plaintext `P` is smaller than 16. What I would like you to do is store the full `P` somewhere and invoke `getHexMatP()` repeatedly in some kind of loop using substrings of `P` of length 16 (`p`) and print the matrix returned by the method every time. Also, make sure you follow the style guidelines http://www.reev.us/mscs630s17/style.html that were given for this course.

Resources:

- Your textbook (Stanoyevitch)!
- Project submission guidelines for this course: www.reev.us/mscs630s17/project_submission.html
- Coding style guidelines for this course: www.reev.us/mscs630s17/style.html
- “How to” use the command line “shell”: www.reev.us/mscs630s17/shell.html
- The official Java reference: http://docs.oracle.com/javase/tutorial/collections/TOC.html
- Stack Overflow Java Tag: http://stackoverflow.com/questions/tagged/java

Submission:

- Push your work to your GitHub repository before the due date (see the top of this document). Remember to include your name, the date, and the assignment in the (copious, meaningful, and accurate) commit messages. Then double check your files are on GitHub and that your professor has been added as a collaborator (you hopefully did this in Homework 0), his GitHub username is pablorp80.
- Make sure that your program (*.java) is in a folder called labs/3/ inside your repository folder. Your repository folder (say mscs630lastname) should look something like this:

```
mscs630lastname/
|   labs/ ... This directory will have all your labs, organized as one directory per lab, where you will have any .java files as required.
|   |   1/ ... Files for this specific lab would go in here: i.e., your .java file and test cases.
|   |   2/ ...
|   |   hw/
|   |   prj/
```

Page 5